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Abstract. A system of metastable plus unstable states is discussed. The mass matrix governing the time
development of the system is supposed to vary slowly with time. The adiabatic limit for this case is studied
and it is shown that only the metastable states obtain the analogs of the dynamical and geometrical phase
factors familiar from stable states. Abelian and non-Abelian geometric phase factors for metastable states
are defined.

PACS. 03.65.Vf Phases: geometric; dynamic or topological – 11.30.Er Charge conjugation, parity, time
reversal, and other discrete symmetries – 31.70.Hq Time-dependent phenomena: excitation and relaxation
processes, and reaction rates – 32.80.Ys Weak-interaction effects in atoms

1 Introduction

The investigations reported in this paper are in connection
with an effort to measure atomic parity-(P-)violating ef-
fects with an atomic beam interferometer described in [1].
Parity violation in atoms through neutral current ex-
change was already studied in [2]. The seminal paper in
this field is [3], for reviews see [4–6]. Measurements of P-
violating effects in heavy many electron atoms like Cs and
Tl have already reached a high precision [6–8]. For atoms
with a single electron like hydrogen or deuterium, how-
ever, experimental measurements have, so far, not been
successful. In an atomic beam apparatus an atom can
be subjected to external electric and magnetic fields. Un-
der suitable conditions the motion of the atom can be
described in the adiabatic limit. As is well-known from
Berry’s work [9] the atomic wave function can then ac-
quire a geometric phase factor. For a collection of impor-
tant papers on geometric phases see [10]. We shall study
how such phase factors occur for metastable states and
classify the phases in parity conserving (PC) and parity
violating (PV) ones. The final aim is to see if PV geo-
metric phases are large enough to be measurable with an
atomic beam apparatus. But this will be dealt with in
future work.

Our paper is organised as follows. In Section 2 we dis-
cuss the description of unstable atoms in slowly varying
external electric and magnetic fields. We discuss the adia-
batic limit for stable states and a set of unstable states all
having the same decay rate in Section 3. In Section 4 we
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deal with a simple example of a two state system where
one member is longer lived than the other one. The more
general case of a number of metastable states with equal
decay rates and a number of unstable states with larger
decay rates is treated in Section 5. Our conclusions are
presented in Section 6. Two appendices present the de-
tailed mathematical arguments leading to the results of
Sections 4 and 5. In the companion paper II [11] we study
the metastable 2S states of hydrogen and deuterium and
identify the PC and PV phases occurring there. In the
following we shall refer to tables of II by Table II.1 etc.,
to equations as (II.1) etc.

We use units � = c = 1 if other units are not explicitly
indicated.

2 Metastable states, generalities

Let us consider an atomic system with N stable or un-
stable states. We assume that the atom is at rest and
subjected to slowly varying external electric and magnetic
fields. The effective Schrödinger equation for the system
is then, in the Wigner-Weisskopf approximation,

i
∂

∂t
|t) = M (t)|t), (1)

where |t) is the state vector of the undecayed states and
M (t) the mass (or complex energy) matrix which is, in
general, non Hermitian. For a discussion of the complete
Wigner-Weisskopf solution see for instance [12].

To give an example which we shall study in detail in II
let us consider the states with principal quantum number
n = 2 in ordinary hydrogen. As basis states we have here
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the 2S and 2P states. In total these are N = 16 states
which we number as shown in Table II.4. In Table II.5. we
also give the mass matrix M 0 for the case of zero external
fields. With external fields the mass matrix is

M (t) = M 0 − D · E(t) − µ · B(t). (2)

Here E(t) is the electric, B(t) the magnetic field strength
vector. These are supposed to vary only slowly with t.
Furthermore D is the matrix of the electric and µ of the
magnetic dipole operators in the space of n = 2 states, see
Tables II.6 and II.7, respectively.

We return to the general case (1). We want to study
the adiabatic limit, that is, a given change of M (t) with
t is made over a longer and longer time. Following [13] we
implement this by introducing a reduced time τ , setting

t =
T

τ0
τ (3)

where τ0 is some fixed time. We consider the system over
the interval

0 ≤ τ ≤ τ0 (4)

in the limit of larger and larger T . The mass matrix in (1)
is supposed to be a function of τ only

M (t) = M̂ (τ). (5)

We get then from (1) with |t) ≡ |T ; τ)

i
∂

∂τ
|T ; τ) =

T

τ0
M̂ (τ)|T ; τ). (6)

Here and in the following we indicate explicitly the depen-
dence of the quantities on τ and T , respectively.

The mass matrix M̂ (τ) (5) can be decomposed into
the Hermitian energy and decay matrices

M̂ (τ) = E(τ) − i
2
Γ (τ),

E†(τ) = E(τ),

Γ †(τ) = Γ (τ). (7)

We suppose that Γ (τ) is a positive-semidefinite matrix

Γ (τ) = i
(
M̂ (τ) − M̂

†
(τ)

) ≥ 0. (8)

We suppose, furthermore, that for all τ M̂ (τ) can be di-
agonalised. (This is, for instance, guaranteed if M̂ (τ) has
N different eigenvalues.) Then we have for all τ complete
sets of right and left eigenvectors satisfying

M̂ (τ)|α, τ) = E(α, τ)|α, τ), (9)

(α̃, τ |M̂ (τ) = (α̃, τ |E(α, τ), (10)
(α = 1, . . . , N).

Here E(α, τ) are the — in general complex — eigenvalues
of M̂ (τ),

E(α, τ) = ER(α, τ) − i
2
Γ (α, τ), (11)

with ER(α, τ) the real part of the energy and Γ (α, τ) the
decay rate of the state |α, τ). We choose the normalisation
of the eigenvectors such that

(α̃, τ |β, τ) = δαβ , (12)
(α, τ |α, τ) = 1 (no summation over α). (13)

Everything is supposed to be continuous in τ and we shall
use this in the following in an essential way.

From (8) follows

Γ (α, τ) ≥ 0, (α = 1, . . . , N). (14)

The proof is simple. From (8)–(13) we obtain

(α, τ |Γ (τ)|α, τ) = (α, τ |i
(
M̂ (τ) − M̂

†
(τ)

)
|α, τ)

= Γ (α, τ) ≥ 0. (15)

Note that the reverse is in general not true, that is, (8)
does not follow from (14).

Now we expand the state vector |T ; τ) in terms of the
eigenstates |α, τ):

|T ; τ) =
N∑

α=1

ψα(T ; τ)|α, τ). (16)

From (6) we get then

i
∂

∂τ
ψα(T ; τ) =

T

τ0
E(α, τ)ψα(T ; τ)

−
N∑

β=1

(α̃, τ |i ∂
∂τ

|β, τ)ψβ(T ; τ). (17)

The task is to discuss the solution of (17) for large T .

3 Stable states and states with equal decay
rates

Here we discuss briefly the cases that all states are stable
or that they are unstable but have equal decay rates. In
detail we suppose the following

Γ (α, τ) − Γ (β, τ) = 0 (18)

for all α, β ∈ {1, . . . , N} and all τ ∈ [0, τ0]. This includes
the case of stable states where Γ (α, τ) = 0. Furthermore
we suppose

|E(α, τ) − E(β, τ)| ≥ c > 0 (19)

for all α �= β and all τ ∈ [0, τ0], where c is a positive con-
stant. With (18) and (19) the discussion of the adiabatic
limit of the solution of (17) can be done exactly as in [13]
and one finds as solution of (17) for large T

ψα(T ; τ) = exp
[
−i
T

τ0
ϕα(τ) + iγαα(τ)

]

×
{
ψα(T ; 0) + O

(
1
T

)}
,

(α = 1, . . . , N). (20)
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Here Tϕα(τ)/τ0 is the dynamical and γαα(τ) is the geo-
metric (Berry-)phase,

ϕα(τ) =
∫ τ

0

dτ ′ E(α, τ ′), (21)

γαα(τ) =
∫ τ

0

dτ ′ (α̃, τ ′|i ∂
∂τ ′

|α, τ ′). (22)

From (20) we see that for large T the following holds.
If we start with an eigenstate of M̂ (0) for τ = 0 the
system will be in the corresponding eigenstate of M̂ (τ0)
for τ = τ0. For decaying states (satisfying (18)) both, the
dynamical and the geometric phase factors will have real
and imaginary parts. That is, also the effective decay rates
of the states α will obtain a geometric contribution. The
real, but not the imaginary part of the geometric phase
is “gauge” dependent. If we change the definition of the
states |α, τ) by

|α, τ) −→ |α, τ)′ = eiηα(τ)|α, τ),
(α̃, τ | −→ (α̃, τ |′ = e−iηα(τ)(α̃, τ |, (23)

where ηα(τ) must be real in order to respect (13) we get

(α̃, τ |i ∂
∂τ

|α, τ) −→ (α̃, τ |i ∂
∂τ

|α, τ) − ∂ηα(τ)
∂τ

. (24)

The change of the geometric phase (22) induced by the
transformation (23) of the basis states is, therefore,

γ′αα(τ) = γαα(τ) − ηα(τ) + ηα(0). (25)

4 A two state system of decaying states

Before going to the general case of N decaying states we
discuss as an example a system with two unstable states
(N = 2). Let the state 1 be the longer-lived one. In detail
we suppose

Γ (2, τ) − Γ (1, τ) ≥ ∆Γmin > 0 (26)

for all τ ∈ [0, τ0], where ∆Γmin is a fixed constant. The
real parts of the energies, ER(1, τ) and ER(2, τ), see (11),
can be arbitrary. From (17) we get for N = 2 the coupled
equations

i
∂ψ1

∂τ
(T ; τ) =

[
T

τ0
E(1, τ) − a11(τ)

]
ψ1(T ; τ)

− a12(τ)ψ2(T ; τ),

i
∂ψ2

∂τ
(T ; τ) =

[
T

τ0
E(2, τ) − a22(τ)

]
ψ2(T ; τ)

− a21(τ)ψ1(T ; τ). (27)

Here and in the following we use the definitions

aαβ(τ) = (α̃, τ |i ∂
∂τ

|β, τ), (28)

γαβ(τ) =
∫ τ

0

dτ ′ aαβ(τ ′), (29)

ϕα(τ) =
∫ τ

0

dτ ′ E(α, τ ′)

=
∫ τ

0

dτ ′
[
ER(α, τ ′) − i

2
Γ (α, τ ′)

]
, (30)

ρα(τ) =
∫ τ

0

dτ ′ Γ (α, τ ′), (31)

where α, β ∈ {1, 2}. (In later chapters we use these same
definitions for α, β ∈ {1, . . . , N}) We have

Imϕα(τ) = −1
2
ρα(τ). (32)

With the initial conditions ψα(T ; 0) we can transform (27)
into integral equations

ψ1(T ; τ) = exp
[
−i
T

τ0
ϕ1(τ) + iγ11(τ)

] {
ψ1(T ; 0)

+
∫ τ

0

dτ ′ exp
[
i
T

τ0
ϕ1(τ ′) − iγ11(τ ′)

]
ia12(τ ′)ψ2(T ; τ ′)

}
,

(33)

ψ2(T ; τ) = exp
[
−i
T

τ0
ϕ2(τ) + iγ22(τ)

] {
ψ2(T ; 0)

+
∫ τ

0

dτ ′ exp
[
i
T

τ0
ϕ2(τ ′) − iγ22(τ ′)

]
ia21(τ ′)ψ1(T ; τ ′)

}
.

(34)

Inserting (34) in (33) we get an equation for ψ1(T ; τ)
alone. To write this in a transparent form we introduce
functions χ1(T ; τ) and χ(0)

1 (T ; τ) by

ψ1(T ; τ) = exp
[
−i
T

τ0
ϕ1(τ) + iγ11(τ)

]
χ1(T ; τ), (35)

χ
(0)
1 (T ; τ) = ψ1(T ; 0) + l12(T ; τ)ψ2(T ; 0), (36)

where

l12(T ; τ) = i
∫ τ

0

dτ1 exp
[
i
T

τ0

(
ϕ1(τ1) − ϕ2(τ1)

)

− iγ11(τ1) + iγ22(τ1)
]
a12(τ1). (37)

Furthermore we define an integral operator L for contin-
uous functions τ → ζ(τ) (τ ∈ [0, τ0]) as follows

(Lζ)(τ) = −
∫ τ

0

dτ1 exp
[
i
T

τ0

(
ϕ1(τ1) − ϕ2(τ1)

)

− iγ11(τ1) + iγ22(τ1)
]
a12(τ1)

∫ τ1

0

dτ2 exp
[
− i

T

τ0

(
ϕ1(τ2)

− ϕ2(τ2)
)

+ iγ11(τ2) − iγ22(τ2)
]
a21(τ2) ζ(τ2). (38)
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We get then from (33) and (34)

χ1(T ; τ) = χ
(0)
1 (T ; τ) + (Lχ1)(T ; τ). (39)

From (39) we obtain
(
(1 − L)χ1

)
(T ; τ) = χ

(0)
1 (T ; τ) (40)

with the solution

χ1(T ; τ) =
(
(1 − L)−1χ

(0)
1

)
(T ; τ)

= χ
(0)
1 (T, τ) +

∞∑

n=1

(
Lnχ

(0)
1

)
(T ; τ). (41)

With (36) this gives

χ1(T ; τ)=ψ1(T ; 0)+l12(T ; τ)ψ2(T ; 0)+
∞∑

n=1

(
Lnχ

(0)
1

)
(T ; τ).

(42)
Now we show that all terms on the r.h.s. of (42) except
ψ1(T ; 0) are of order 1/T for large T . We note first that
from (30) and (31) we have
∣
∣
∣
∣exp

[
±i
T

τ0
ϕα(τ)

]∣∣
∣
∣= exp

[
±1

2
T

τ0
ρα(τ)

]
, (α=1, 2). (43)

We get now from (37) and (26)

|l12(T ; τ)| ≤
∫ τ

0

dτ1 exp
[
−1

2
T

τ0
(ρ2(τ1) − ρ1(τ1))

]

×
∣
∣
∣exp

(
− iγ11(τ1) + iγ22(τ1)

)∣∣
∣ |a12(τ1)|

≤
∫ τ

0

dτ1 exp
[
−1

2
T

τ0
(ρ2(τ1) − ρ1(τ1))

]

× (Γ (2, τ1) − Γ (1, τ1))∆Γ−1
min

×
∣∣
∣exp

(
− iγ11(τ1) + iγ22(τ1)

)∣∣
∣ |a12(τ1)| . (44)

Above, after (13), we have explicitly supposed that all
functions like a12(τ), γ11(τ) etc. are continuous for τ ∈
[0, τ0]. Thus they are bounded there. We set

c12 = max
τ1∈[0,τ0]

{
τ0

∣
∣
∣exp

(
− iγ11(τ1)+iγ22(τ1)

)∣∣
∣ |a12(τ1)|

}
. (45)

From (44) we get then with (31)

|l12(T ; τ)| ≤ c12

∫ τ

0

dτ1 exp
[
− T

2τ0

(
ρ2(τ1) − ρ1(τ1)

)
]

× [Γ (2, τ1) − Γ (1, τ1)] (τ0∆Γmin)−1

= c12

∫ τ

0

dτ1 exp
[
− T

2τ0

(
ρ2(τ1) − ρ1(τ1)

)
]

× d

dτ1

(
ρ2(τ1) − ρ1(τ1)

)
(τ0∆Γmin)−1

= c12
2
T

(
1 − exp

[
− T

2τ0

(
ρ2(τ) − ρ1(τ)

)])
(∆Γmin)−1

≤ c12
2
T

(∆Γmin)−1. (46)

Here we use that due to (26) and (31) we have for all
τ ∈ [0, τ0]

ρ2(τ) − ρ1(τ) ≥ τ ∆Γmin ≥ 0. (47)

In Appendix A we show that for large T
∣∣
∣
∣
∣

∞∑

n=1

(
Lnχ

(0)
1

)
(T ; τ)

∣∣
∣
∣
∣
≤ C1(T∆Γmin)−1 |ψ1(T ; 0)|

+C2(T∆Γmin)−2|ψ2(T ; 0)|, (48)

where C1,2 are positive constants. We get, therefore, from
(42) with (46) and (48) for large T

χ1(T ; τ) = ψ1(T ; 0)
[
1 + O

(
1
T

)]
+ O

(
1
T

)
ψ2(T ; 0).

(49)

Inserting this in (35) we find that for large T the solution
of the original amplitude for the longer-lived state is

ψ1(T ; τ) = exp
[
−i
T

τ0
ϕ1(τ) + iγ11(τ)

]

×
{
ψ1(T ; 0)

[
1 + O

(
1
T

)]
+ O

(
1
T

)
ψ2(T ; 0)

}
. (50)

For the amplitude of the shorter-lived state we obtain,
in an analogous manner, from (34) and (50) (see Ap-
pendix A)

ψ2(T ; τ) = exp
[
−i
T

τ0
ϕ1(τ) + iγ11(τ)

]

×
{
ψ1(T ; 0)O

(
1
T

)
+ ψ2(T ; 0)O

(
1
T 2

)}

+ exp
[
−i
T

τ0
ϕ2(τ) + iγ22(τ)

]
ψ2(T ; 0). (51)

The interpretation of the results (50) and (51) is clear.
The amplitude for the longer lived state, α = 1, shows the
usual dynamical and geometrical phase factors, Tϕ1(τ)/τ0
and γ11(τ), respectively. Both these factors are in gen-
eral complex for decaying states. The shorter lived state,
α = 2, gets in general some feeding from the longer lived
one. Thus the leading term of its amplitude (the first on
the r.h.s. of (51)) has the same exponential factor as the
amplitude for α = 1. But there is a suppression by at least
a factor of order 1/T . For τ > 0 and large T the second
term on the r.h.s of (51) vanishes exponentially relative to
the first term, see (43) and (47).

In particular, if we start at τ = 0 with ψ1(T ; 0) �= 0
and ψ2(T ; 0) = 0, that is only the longer lived state is
populated, the system stays in the state α = 1 up to cor-
rections of relative order 1/T . The amplitude evolves with
the appropriate dynamical and geometrical phase factors.
If, however, we start at τ = 0 with ψ1(T ; 0) = 0 and
ψ2(T ; 0) �= 0, that is only the shorter lived state is pop-
ulated, it will in general populate to a small extent the
longer lived one. The latter will then feed back on the
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former and “impose” its decay properties on the system.
But all this gives only amplitudes which are suppressed for
large T . To summarise: the adiabatic theorem in the usual
form can only be used for the amplitude of the longer-lived
state.

5 Several metastable and short lived states

Here we generalise the results of Section 4 to a system
having several metastable and several short lived states.
In detail we suppose that the system has N states where
the firstM ones (1 ≤M < N) are metastable. We suppose
equal decay rates for the metastable states, that is

Γ (α, τ) = Γ (1, τ) (52)

for α ∈ {1, . . . ,M} and τ ∈ [0, τ0]. The remaining N −M
states should have substantially larger decay rates for all
τ : we suppose

Γ (β, τ) − Γ (α, τ) ≥ ∆Γmin > 0 (53)

for all α, β with 1 ≤ α ≤ M and M + 1 ≤ β ≤ N and all
τ ∈ [0, τ0]. Here ∆Γmin is a fixed constant.

The problem is again to solve (17) for large T . As in
Section 4 it is convenient to transform (17) into an integral
equation. We use the same notation as in (28)–(32) but
now for 1 ≤ α, β ≤ N . With the initial conditions ψα(T ; 0)
we obtain from (17)

ψα(T ; τ) = exp
[
−i
T

τ0
ϕα(τ) + iγαα(τ)

]

×
{

ψα(T ; 0) +
∫ τ

0

dτ ′ exp
[
i
T

τ0
ϕα(τ ′) − iγαα(τ ′)

]

×
∑

β �=α

iaαβ(τ ′)ψβ(T ; τ ′)

}

,

(1 ≤ α, β ≤ N). (54)

In the following we use matrix notation. We set for the
metastable states

ψα(T ; τ) = exp
[
−i
T

τ0
ϕα(τ) + iγαα(τ)

]
χα(T ; τ), (55)

(1 ≤ α ≤M),

χ(T ; τ) =

⎛

⎜
⎝

χ1(T ; τ)
...

χM (T ; τ)

⎞

⎟
⎠ . (56)

For the short lived states we set with ρ1(τ) from (31)

ψβ(T ; τ) = exp
[
− T

2τ0
ρ1(τ)

]
ξβ(T ; τ), (57)

(M + 1 ≤ β ≤ N),

ξ(T ; τ) =

⎛

⎜
⎝

ξM+1(T ; τ)
...

ξN (T ; τ)

⎞

⎟
⎠ . (58)

We have for τ = 0

χ(T ; 0) =

⎛

⎜
⎝

ψ1(T ; 0)
...

ψM (T ; 0)

⎞

⎟
⎠ ≡ χ(0)(T ; τ), (59)

ξ(T ; 0) =

⎛

⎜
⎝

ψM+1(T ; 0)
...

ψN (T ; 0)

⎞

⎟
⎠ ≡ ξ(0)(T ; τ). (60)

Furthermore we define

ξ̃(0)(T ; τ) =

⎛

⎜
⎝

ξ̃
(0)
M+1(T ; τ)

...
ξ̃
(0)
N (T ; τ)

⎞

⎟
⎠, (61)

ξ̃(0)α (T ; τ)=exp
[
−i
T

τ0
ϕα(τ)+

T

2τ0
ρ1(τ)+iγαα(τ)

]
ψα(T ; 0),

(M + 1 ≤ α ≤ N). (62)

The integral equations (54) can then be written in matrix
form as follows

χ = χ(0) + L(1,1)χ+ L(1,2)ξ, (63)

ξ = ξ̃(0) + L(2,1)χ+ L(2,2)ξ. (64)

Here the L(i,j) are integral operators (generalising (37)
and (38)) which are given explicitly in Appendix B.

The formal solution of (63) and (64) is easily written
down. We get from (64)
(
1 − L(2,2)

)
ξ = ξ̃(0) + L(2,1)χ, (65)

ξ =
(
1 − L(2,2)

)−1 (
ξ̃(0) + L(2,1)χ

)
. (66)

Inserting this in (63) gives

{
1 − L(1,1) − L(1,2)

(
1 − L(2,2)

)−1

L(2,1)

}
χ =

χ(0) + L(1,2)
(
1 − L(2,2)

)−1

ξ̃(0), (67)

χ =
{

1 − L(1,1) − L(1,2)
(
1 − L(2,2)

)−1

L(2,1)

}−1

×
{
χ(0) + L(1,2)

(
1 − L(2,2)

)−1

ξ̃(0)
}
. (68)

This is the exact solution. In Appendix B we show that
for large T we get from (68) the result

χ =
(
1 − L(1,1)

)−1

χ(0) + O
(

1
T

)
‖χ(0)‖

+ O
(

1
T

)
‖ξ(0)‖, (69)
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or written in another form

χ(T, τ) = Û(T ; τ)χ(0) + O
(

1
T

)
‖χ(0)‖

+ O
(

1
T

)
‖ξ(0)‖, (70)

see (B.82) and (B.83). Here the norms ‖χ(0)‖, ‖ξ(0)‖ and
theM×M matrix Û are defined in (B.3), (B.4) and (B.16),
respectively.

The solution for ξ(T ; τ) is given in (66). The term (1−
L(2,2))−1L(2,1)χ can be estimated using (B.55) and we find

‖(1 − L(2,2))−1L(2,1)χ‖ ≤ O
(

1
T

)
‖χ‖. (71)

With (70), (B.16) and (B.41) we get from (71)

‖(1 − L(2,2))−1L(2,1)χ‖ ≤

O
(

1
T

)
‖χ(0)‖ + O

(
1
T 2

)
‖ξ(0)‖. (72)

The term (1 − L(2,2))−1ξ̃(0) in (66) can be estimated ac-
cording to (B.71)

‖(1−L(2,2))−1ξ̃(0)‖≤ Ĉ22 exp
[
− T

2τ0
∆Γminτ

]
‖ξ0)‖. (73)

Putting everything together we find

ξ(T ; τ) = O
(

1
T

)
‖χ(0)‖ + O

(
1
T 2

)
‖ξ(0)‖

+ exp
[
− T

2τ0
∆Γminτ

]
O(1)‖ξ(0)‖. (74)

Now we can go back to the original amplitudes ψα(T ; τ)
of (17) and (54). We find from (55), (59) and (70) for the
amplitudes of the metastable states

ψα(T ; τ) = exp
[
−i
T

τ0
ϕα(τ)

]{ M∑

β=1

Ugeom
αβ (T ; τ)χ(0)

β

+ O
(

1
T

)
‖χ(0)‖ + O

(
1
T

)
‖ξ(0)‖

}

, (75)

for α ∈ {1, . . . ,M}. Here the matrix of the geometric
phase factors is given by

Ugeom(T ; τ) =
(
Ugeom

αβ (T ; τ)
)
,

Ugeom
αβ (T ; τ) = exp[iγαα(τ)]Ûαβ(T ; τ) (76)

with Û(T ; τ) given in (B.16). For the amplitudes of the
short lived states we find from (57), (60) and (74)

ψβ(T ; τ)=exp
[
− T

2τ0
ρ1(τ)

]{
O
(

1
T

)
‖χ(0)‖+O

(
1
T 2

)
‖ξ(0)‖

}

+ exp
[
− T

2τ0

(
ρ1(τ) +∆Γminτ

)
]
O(1)‖ξ(0)‖,

β ∈ {M + 1, . . . , N}. (77)

The interpretation of (75) and (77) is analogous to the
one given for the two-state system in Section 4. Suppose
that for t = 0 only the metastable states are populated,
that is, we have χ(0) �= 0 and ξ(0) = 0. Then the ampli-
tudes for the metastable states evolve according to (75),
obtaining a dynamical phase factor but also a — in gen-
eral non Abelian — geometric phase factor given by the
matrix Ugeom(T ; τ). Corrections to this are suppressed by
a factor T−1 for large T . Looking through the formulae
of Appendix B we see that these suppressed terms are of
order (T∆Γmin)−1 relative to the leading term. We shall
analyse the metastable states further in Section 6.

On the other hand, suppose that initially only the
short lived states are populated, that is, we have χ(0) = 0
and ξ(0) �= 0. Then the amplitudes of the short lived
states have one part showing a fast decay correspond-
ing to the decay rates of the short lived states and terms
O(1/T 2) showing the decay as for the metastable states.
The metastable states get in this case only amplitudes
suppressed by O(1/T ).

6 The metastable states

In this section we study the evolution of the metastable
states alone. That is, we assume T to be large enough
such that all terms O(1/T ) can be neglected. We have
then from (75)

ψα(T ; τ) =
M∑

β=1

Uαβ(T ; τ)χ(0)
β , α ∈ {1, . . . ,M}, (78)

where

U(T ; τ) =
(
Uαβ(T ; τ)

)

= Udyn(T ; τ)Ugeom(T ; τ), (79)

Udyn(T ; τ) =
(

exp
[
−i
T

τ0
ϕα(τ)

]
δαβ

)
(80)

and Ugeom(T ; τ) is defined in (76). This gives with Û from
(B.16)

Uαβ(T ; τ) = exp
[
−i
T

τ0
ϕα(τ) + iγαα(τ)

]
Ûαβ(T ; τ). (81)

From (29), (30), (B.16) and (B.17) we find

U(T ; 0) = �M , (82)
∂

∂τ
U(T ; τ) = −iN (T ; τ)U(T ; τ), (83)

where

N (T ; τ) =
(
Nαβ(T ; τ)

)
,

Nαβ(T ; τ) =
T

τ0
E(α, τ)δαβ − aαβ(τ),

α, β ∈ {1, . . . ,M}. (84)
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Thus, the amplitudes for the metastable states (78) evolve
according to the effective Schrödinger equation

i
∂

∂τ
ψα(T ; τ) =

M∑

β=1

Nαβ(T ; τ)ψβ(T ; τ),

α ∈ {1, . . . ,M}. (85)

with effective mass matrix N (T ; τ).
Recall that we supposed equal decay rates for the

metastable states. If the energy eigenvalues for these states
satisfy (19) we can use the results of Section 3. Then the
amplitudes ψα(T ; τ) (85) decouple in the evolution for
T → ∞ and we get up to corrections of relative order
1/T (see (20))

ψα(T ; τ) = exp
[
−i
T

τ0
ϕα(τ) + iγαα(τ)

]
χ(0)

α , (86)

U(T ; τ) =
(

exp
[
−i
T

τ0
ϕα(τ) + iγαα(τ)

]
δαβ

)
, (87)

Ugeom(T ; τ) =
(

exp [iγαα(τ)] δαβ

)
. (88)

That is, in this case the matrix of geometric phase fac-
tors becomes diagonal. In the general case, however,
Ugeom(T ; τ) will contain non-diagonal terms.

Finally, we note that the results of this paper remain
the same if the metastable states have slightly different
decay rates and we consider only times T for which

∣
∣[Γ (α, τ) − Γ (β, τ)

]
T
∣
∣	 1 (89)

for all α, β ∈ {1, . . . ,M} and all τ ∈ [0, τ0].

7 Conclusions

In this article we have analysed the temporal behaviour of
a system consisting of several metastable and several short
lived states. The mass matrix governing the evolution of
the system was supposed to be slowly varying with time,
see (1)–(5). The adiabatic theorem, adapted to decaying
states, was shown to hold for the metastable states, see
Section 5. The evolution of these states (see (78), (79)) is
governed by a dynamical phase factor matrix Udyn(T, τ)
(80) which is diagonal and a geometric phase factor matrix
Ugeom(T ; τ) (76) which, in general, is not diagonal.

In the accompanying paper II we apply these results to
a study of the states of hydrogen and deuterium with prin-
cipal quantum number n = 2 in slowly varying external
electric and magnetic fields. The 2S states are metastable
and we shall define and discuss parity conserving and par-
ity violating geometric phase factors for them.

The authors thank M. DeKieviet, D. Dubbers, and U.
Jentschura for many useful discussions and W. Wetzel for
his continuing support concerning the computational aspects
of this work. They also thank W. Bernreuther, D. Bruß,
and K. Jungmann for encouraging comments. This work was
supported by Deutsche Forschungsgemeinschaft under project
No. NA296/3-1.

Appendix A

Here we give the details of the estimates (48) and (51) for
the two-state system discussed in Section 4.

We start with the proof of (48). The operator L is
defined in (38). For any continuous function τ → ζ(τ) on
the interval [0, τ0] we have with (26) and (43)

∣
∣(Lζ)(τ)

∣
∣ ≤

∫ τ

0

dτ1 exp
[
− T

2τ0

(
ρ2(τ1) − ρ1(τ1)

)
]

× |exp [−iγ11(τ1) + iγ22(τ1)]| |a12(τ1)|

×
∫ τ1

0

dτ2 exp
[
T

2τ0

(
ρ2(τ2) − ρ1(τ2)

)
]

× [
Γ (2, τ2) − Γ (1, τ2)

]

×∆Γ−1
min |exp [iγ11(τ2) − iγ22(τ2)]| |a21(τ2)|

× max
τ ′∈[0,τ0]

|ζ(τ ′)|. (A.1)

Analogously to (45) we define

c21 = max
τ2∈[0,τ0]

{τ0 |exp[iγ11(τ2)−iγ22(τ2)]| |a21(τ2)|} (A.2)

where c21 is a finite, non-negative constant. We get then
with (45) and (A.2)

∣
∣(Lζ)(τ)

∣
∣ ≤ c12c21 τ

−2
0 ∆Γ−1

min max
τ ′∈[0,τ0]

|ζ(τ ′)|

×
∫ τ

0

dτ1 exp
[
− T

2τ0

(
ρ2(τ1) − ρ1(τ1)

)]

×
∫ τ1

0

dτ2 exp
[
T

2τ0

(
ρ2(τ2) − ρ1(τ2)

)
]

× d

dτ2

(
ρ2(τ2) − ρ1(τ2)

)

= c12c21 τ
−2
0 ∆Γ−1

min max
τ ′∈[0,τ0]

|ζ(τ ′)|

× 2τ0
T

∫ τ

0

dτ1

{
1 − exp

[
− T

2τ0

(
ρ2(τ1) − ρ1(τ1)

)
]}

≤ c12c21∆Γ
−1
min

2
T

max
τ ′∈[0,τ0]

|ζ(τ ′)| . (A.3)

Setting

τ̃0 = 2c12c21∆Γ−1
min (A.4)

we have thus

∣
∣(Lζ)(τ)

∣
∣ ≤ τ̃0

T
max

τ ′∈[0,τ0]
|ζ(τ ′)| (A.5)

and by straightforward iteration

∣∣(Lnζ)(τ)
∣∣ ≤

(
τ̃0
T

)n

max
τ ′∈[0,τ0]

|ζ(τ ′)| . (A.6)
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For large enough T we have certainly T > 2τ̃0 and we get

∣
∣∣
∣
∣

∞∑

n=1

(Lnζ)(τ)

∣
∣∣
∣
∣
≤

∞∑

n=1

(
τ̃0
T

)n

max
τ ′∈[0,τ0]

|ζ(τ ′)|

=
τ̃0
T

(
1 − τ̃0

T

)−1

max
τ ′∈[0,τ0]

|ζ(τ ′)|

≤ 2τ̃0
T

max
τ ′∈[0,τ0]

|ζ(τ ′)| . (A.7)

Replacing here ζ(τ) by χ
(0)
1 (T ; τ) we get with (36) and

(46)

∣
∣
∣
∣
∣

∞∑

n=1

(Lnχ
(0)
1 )(T ; τ)

∣
∣
∣
∣
∣
≤ 2τ̃0

T
max

τ ′∈[0,τ0]

∣
∣
∣χ(0)

1 (T, τ ′)
∣
∣
∣

≤ 2τ̃0
T

{
|ψ1(T ; 0)| + O

(
1
T

)
|ψ2(T ; 0)|

}
(A.8)

which proves (48).

For the proof of (51) we start from (34) and (35) to
get

ψ2(T ; τ) = ψ
(1)
2 (T ; τ) + ψ

(2)
2 (T ; τ), (A.9)

where

ψ
(1)
2 (T ; τ) =exp

[
−i
T

τ0
ϕ1(τ)+iγ11(τ)

]
χ

(1)
2 (T ; τ), (A.10)

χ
(1)
2 (T ; τ) = exp

[
−i
T

τ0

(
ϕ2(τ) − ϕ1(τ)

)
]

× exp [−iγ11(τ) + iγ22(τ)]

×
∫ τ

0

dτ1 exp
[
i
T

τ0

(
ϕ2(τ1) − ϕ1(τ1)

)
]

× exp [iγ11(τ1) − iγ22(τ1)] ia21(τ1)χ1(T ; τ1),
(A.11)

ψ
(2)
2 (T ; τ) = exp

[
−i
T

τ0
ϕ2(τ) + iγ22(τ)

]
ψ2(T ; 0). (A.12)

Using the same techniques as for (Lζ)(τ) we find with c21
from (A.2) and with (49)
∣∣
∣χ(1)

2 (T ; τ)
∣∣
∣ ≤ c21(τ0∆Γmin)−1

× max
τ ′∈[0,τ0]

|exp [−iγ11(τ ′) + iγ22(τ ′)]|

× exp
[
− T

2τ0

(
ρ2(τ) − ρ1(τ)

)]

×
∫ τ

0

dτ1 exp
[
T

2τ0

(
ρ2(τ1) − ρ1(τ1)

)
]

× d

dτ1

(
ρ2(τ1) − ρ1(τ1)

)

×
{
|ψ1(T ; 0)|

[
1 + O

(
1
T

)]
+ O

(
1
T

)
|ψ2(T ; 0)|

}

≤ 2
T
∆Γ−1

minc21 max
τ ′∈[0,τ0]

|exp [−iγ11(τ ′) + iγ22(τ ′)]|

×
{
|ψ1(T ; 0)|

[
1 + O

(
1
T

)]
+ O

(
1
T

)
|ψ2(T ; 0)|

}
.

(A.13)

Inserting (A.10)–(A.13) in (A.9) proves (51).
To summarise, we find the following results where for

later use in II we write out the nominal order of magnitude
of the first correction terms

ψ1(T ; τ) = exp
[
−i
T

τ0
ϕ1(τ) + iγ11(τ)

]

×
{

ψ1(T ; 0)
[
1 +

4c12c21
T ∆Γmin

O(1)
]

+
2c12

T ∆Γmin
O(1)ψ2(T ; 0)

}

, (A.14)

ψ2(T ; τ) = exp
[
−i
T

τ0
ϕ1(τ) + iγ11(τ)

]

×
{

2c21
T ∆Γmin

O(1)ψ1(T ; 0)

+
4c21c12

(T ∆Γmin)2
O(1)ψ2(T ; 0)

}

+ exp
[
−i
T

τ0
ϕ2(τ)+iγ22(τ)

]
ψ2(T ; 0). (A.15)

Appendix B

Here we give the details of the calculations in Section 5.
Inserting (55)–(58) in (54) we get (63) and (64) where

we define the operators L(i,j) (1 ≤ i, j ≤ 2) as follows. Let

τ → ζ(τ) =

⎛

⎜
⎝

ζ1(τ)
...

ζM (τ)

⎞

⎟
⎠ , (B.1)
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and

τ → η(τ) =

⎛

⎜
⎝

ηM+1(τ)
...

ηN (τ)

⎞

⎟
⎠ (B.2)

be continuous vector functions for τ ∈ [0, τ0]. We define
the norm for such functions as

‖ζ‖ = max
1≤α≤M,
τ∈[0,τ0]

|ζα(τ)|, (B.3)

‖η‖ = max
M+1≤β≤N,

τ∈[0,τ0]

|ηβ(τ)|. (B.4)

The operators L(i,j) are defined as

(
L(1,1)ζ

)

α
(τ) = i

∫ τ

0

dτ ′ exp
[
i
T

τ0
ϕα(τ ′) − iγαα(τ ′)

]

×
M∑

β=1

aαβ(τ ′) (1 − δαβ)

× exp
[
−i
T

τ0
ϕβ(τ ′) + iγββ(τ ′)

]
ζβ(τ ′),

(1 ≤ α ≤M), (B.5)

(
L(1,2)η

)

α
(τ) = i

∫ τ

0

dτ ′ exp
[
i
T

τ0
ϕα(τ ′) − iγαα(τ ′)

]

×
N∑

β=M+1

aαβ(τ ′) exp
[
− T

2τ0
ρ1(τ ′)

]
ηβ(τ ′),

(1 ≤ α ≤M), (B.6)

(
L(2,1)ζ

)

α
(τ) = exp

[
−i
T

τ0
ϕα(τ) +

T

2τ0
ρ1(τ) + iγαα(τ)

]

× i
∫ τ

0

dτ ′ exp
[
i
T

τ0
ϕα(τ ′) − iγαα(τ ′)

]

×
M∑

β=1

aαβ(τ ′) exp
[
−i
T

τ0
ϕβ(τ ′) + iγββ(τ ′)

]
ζβ(τ ′),

(M + 1 ≤ α ≤ N), (B.7)

(
L(2,2)η

)

α
(τ) = exp

[
−i
T

τ0
ϕα(τ) +

T

2τ0
ρ1(τ) + iγαα(τ)

]

× i
∫ τ

0

dτ ′ exp
[
i
T

τ0
ϕα(τ ′) − iγαα(τ ′)

]

×
N∑

β=M+1

aαβ(τ ′) (1 − δαβ) exp
[
− T

2τ0
ρ1(τ ′)

]
ηβ(τ ′)

(M + 1 ≤ α ≤ N). (B.8)

Our aim is to derive estimates similar to (46) and (A.3)–
(A.8) in order to prove (69). Let us first recall that we are

supposing all functions of τ to be continuous for τ ∈ [0, τ0].
Thus we can define the following dimensionless nonnega-
tive and finite constants

C11 = max
1≤α≤M,
1≤β≤M,
τ∈[0,τ0]

τ0

∣
∣∣aαβ(τ) (1 − δαβ)

× exp [−iγαα(τ) + iγββ(τ)]
∣∣
∣, (B.9)

C12= max
1≤α≤M,

M+1≤β≤N,
τ∈[0,τ0]

τ0

∣∣
∣aαβ(τ) exp[−iγαα(τ)+iγββ(τ)]

∣∣
∣, (B.10)

C21 = max
M+1≤α≤N,

1≤β≤M,
τ∈[0,τ0]

τ0

∣
∣
∣aαβ(τ) exp [−iγαα(τ) + iγββ(τ)]

∣
∣
∣,

(B.11)

C22 = max
M+1≤α≤N,
M+1≤β≤N,

τ∈[0,τ0]

τ0

∣
∣
∣aαβ(τ) (1 − δαβ)

× exp [−iγαα(τ) + iγββ(τ)]
∣
∣
∣. (B.12)

Now we consider the solution for χ given in (68). With
simple algebra we can rewrite it as follows

χ =
(
1 − L(1,1)

)−1 (
1 − L̃

)−1

×
{
χ(0) + L(1,2)

(
1 − L(2,2)

)−1

ξ̃(0)
}

=
(
1 − L(1,1)

)−1
( ∞∑

k=0

L̃k

)

×
{
χ(0) + L(1,2)

(
1 − L(2,2)

)−1

ξ̃(0)
}
, (B.13)

where

L̃ = L(1,2)
(
1 − L(2,2)

)−1

L(2,1)
(
1 − L(1,1)

)−1

. (B.14)

We study first the operator
(
1 − L(1,1)

)−1
. Let

ζc =

⎛

⎜
⎝

ζ1
...
ζM

⎞

⎟
⎠ (B.15)

be a constant vector. We define a M ×M matrix function
Û(T ; τ) by

Û(T ; τ)ζc =
((

1 − L(1,1)
)−1

ζc

)
(τ)

=
∞∑

r=0

((
L(1,1)

)r

ζc

)
(τ)

= ζc +

(

L(1,1)
∞∑

r=0

(
L(1,1)

)r

ζc

)

(τ). (B.16)
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From (B.5) and (B.16) we find

∂

∂τ
Û(T ; τ)ζc =

∂

∂τ

{

ζc +

(

L(1,1)
∞∑

r=0

(
L(1,1)

)r

ζc

)

(τ)

}

= A(T ; τ)Û (T ; τ)ζc (B.17)

where

A(T ; τ) =
(
Aαβ(T ; τ)

)
,

Aαβ(T ; τ) = exp
[
i
T

τ0
ϕα(τ) − iγαα(τ)

]
iaαβ(τ) (1 − δαβ)

× exp
[
−i
T

τ0
ϕβ(τ) + iγββ(τ)

]
,

(1 ≤ α, β ≤M). (B.18)

We have

Û(T ; 0) = �M , det Û(T ; 0) = 1, (B.19)
TrA(T ; τ) = 0, for all τ ∈ [0, τ0]. (B.20)

We also have the relation

∂

∂τ
det Û(T ; τ) = TrA(T ; τ) det Û(T ; τ) (B.21)

following from (B.17). We find, therefore, with (B.20) and
(B.19)

det Û(T ; τ) = det Û(T ; 0) = 1 (B.22)

for all τ ∈ [0, τ0]. Thus Û(T ; τ) is never singular and has
an inverse Û−1(T ; τ) for all τ ∈ [0, τ0]. For the inverse we
have

∂

∂τ
Û−1(T ; τ) = −Û−1(T ; τ)A(T ; τ). (B.23)

The matrix elements Aαβ(T ; τ) (B.18) are bounded as we
see from (B.9), (43) and (52):

|Aαβ(T ; τ)| ≤ C11

τ0
(B.24)

for all τ ∈ [0, τ0]. We show now that also the matrix ele-
ments Ûαβ(T ; τ) and Û−1

αβ (T ; τ) are bounded. Indeed, con-
sider

B(T ; τ) = Û(T ; τ)Û †(T ; τ). (B.25)

We can diagonalise this matrix

S(T ; τ)B(T ; τ)S†(T ; τ) = diag (b1(T ; τ), . . . , bM (T ; τ))
≡ Bdiag(T ; τ), (B.26)

S(T ; τ)S†(T ; τ) = �. (B.27)

The eigenvalues bα(T ; τ) must be positive

bα(T ; τ) > 0, for all τ ∈ [0, τ0] , (α = 1, . . . ,M). (B.28)

Now we consider TrB(T ; τ) and find from (B.17)

∂

∂τ
TrB(T ; τ) = Tr

{
A(T ; τ)B(T ; τ) +B(T ; τ)A†(T ; τ)

}

= Tr
{
Bdiag(T ; τ)

× [
S(T ; τ)

(
A(T ; τ) +A†(T ; τ)

)
S†(T ; τ)

] }

=
M∑

α=1

bα(T ; τ)A′
αα(T ; τ), (B.29)

where

A′
αα(T ; τ) =

[
S(T ; τ)

(
A(T ; τ) +A†(T ; τ)

)
S†(T ; τ)

]
αα
.

(B.30)

Suppressing the arguments (T ; τ) we have

A′
αα =

M∑

β,γ=1

(
Aβγ +A∗

γβ

)
SαβS

∗
αγ , (B.31)

|A′
αα|2 =

∣∣
∣
∣
∣
∣

M∑

β,γ=1

(
Aβγ +A∗

γβ

)
SαβS

∗
αγ

∣∣
∣
∣
∣
∣

2

≤
⎛

⎝
M∑

β,γ=1

∣
∣Aβγ +A∗

γβ

∣
∣2
⎞

⎠
M∑

β,γ=1

(
SαβS

∗
αγS

∗
αβSαγ

)

=
M∑

β,γ=1

∣
∣Aβγ +A∗

γβ

∣
∣2

≤ 4M2

(
C11

τ0

)2

. (B.32)

Thus we find

|A′
αα| ≤ 2M

C11

τ0
(B.33)

and from (B.29)

∂

∂τ
TrB(T ; τ) ≤ 2M

C11

τ0

M∑

α=1

bα(T ; τ)

= 2M
C11

τ0
TrB(T ; τ). (B.34)

From (B.34) and the initial condition (B.19) we see that

Tr
{
Û(T ; τ)Û †(T ; τ)

}
≤M exp (2MC11) (B.35)

for all τ ∈ [0, τ0]. This shows that all matrix elements of
Û(T ; τ) stay bounded and, in particular, have no terms
growing exponentially with T . Using (B.23) it is easy
to show that the same holds for all matrix elements of
Û−1(T ; τ).

Consider now an arbitrary vector function τ → ζ(τ)
as in (B.1) and set

ζ̃T (τ) =
((

1 − L(1,1)
)−1

ζ

)
(τ)

= ζ(τ) +
(
L(1,1)ζ̃T

)
(τ). (B.36)
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We have then

ζ̃T (0) = ζ(0), (B.37)
∂

∂τ
ζ̃T (τ) =

∂ζ(τ)
∂τ

+A(T ; τ)ζ̃T (τ). (B.38)

The solution is

ζ̃T (τ) = ζ(τ) + Û(T ; τ)
∫ τ

0

dτ ′ Û−1(T ; τ ′)A(T ; τ ′)ζ(τ ′).

(B.39)

Since the matrix elements of A(T ; τ), Û(T ; τ) and
Û−1(T ; τ) are all bounded, see (B.24)–(B.35), we see that
with the norm as in (B.3) we get

‖ζ̃T ‖ ≤ C̃‖ζ‖. (B.40)

Here C̃ is a constant. That is, we have from (B.36)

‖
(
1 − L(1,1)

)−1

ζ‖ ≤ C̃‖ζ‖. (B.41)

The next term to consider is the following operator occur-
ring in (B.14)

L(1,2)
(
1 − L(2,2)

)−1

L(2,1) =
∞∑

r=0

L(1,2)
(
L(2,2)

)r

L(2,1)

=
∞∑

r=0

K(r), (B.42)

where

K(r) = L(1,2)
(
L(2,2)

)r

L(2,1). (B.43)

Let ζ(τ) be as in (B.1). We get then

(
K(0)ζ

)

α
(τ) =

(
L(1,2)L(2,1)ζ

)

α
(τ)

=
N∑

β=M+1

M∑

κ=1

i
∫ τ

0

dτ1 exp
[
i
T

τ0
ϕα(τ1) − i

T

τ0
ϕβ(τ1)

]

× aαβ(τ1) exp [−iγαα(τ1) + iγββ(τ1)]

× i
∫ τ1

0

dτ2 exp
[
i
T

τ0
ϕβ(τ2) − i

T

τ0
ϕκ(τ2)

]

× aβκ(τ2) exp [−iγββ(τ2) + iγκκ(τ2)] ζκ(τ2),

(α = 1, . . . ,M). (B.44)

Using (43), (B.10) and (B.11) we find the following esti-
mates

∣
∣∣
(
K(0)ζ

)

α
(τ)

∣
∣∣ ≤ 1

τ2
0

C12C21‖ζ‖∆Γ−1
min

N∑

β=M+1

M∑

κ=1

∫ τ

0

dτ1 exp
[
T

2τ0

(
ρ1(τ1)−ρβ(τ1)

)
]

×
∫ τ1

0

dτ2 exp
[
T

2τ0

(
ρβ(τ2) − ρ1(τ2)

)]

× [Γ (β, τ2) − Γ (1, τ2)]

≤M(N −M)C12C21∆Γ
−1
min

2
T
‖ζ‖, (B.45)

‖K(0)ζ‖ ≤M(N −M)C12C21∆Γ
−1
min

2
T
‖ζ‖. (B.46)

In a similar way we get for 1 ≤ α ≤M
(
K(1)ζ

)

α
(τ) =

(
L(1,2)L(2,2)L(2,1)ζ

)

α
(τ)

=
N∑

β=M+1

N∑

γ=M+1

M∑

κ=1

i
∫ τ

0

dτ1

× exp
[
i
T

τ0
ϕα(τ1) − i

T

τ0
ϕβ(τ1)

]

× aαβ(τ1) exp [−iγαα(τ1) + iγββ(τ1)]

× i
∫ τ1

0

dτ2 exp
[
i
T

τ0
ϕβ(τ2) − i

T

τ0
ϕγ(τ2)

]

× aβγ(τ2) (1 − δβγ) exp [−iγββ(τ2) + iγγγ(τ2)]

× i
∫ τ2

0

dτ3 exp
[
i
T

τ0
ϕγ(τ3) − i

T

τ0
ϕκ(τ3)

]

× aγκ(τ3) exp [−iγγγ(τ3) + iγκκ(τ3)] ζκ(τ3), (B.47)

∣
∣∣
(
K(1)ζ

)

α
(τ)

∣
∣∣ ≤

N∑

β=M+1

N∑

γ=M+1

M∑

κ=1

∫ τ

0

dτ1

× exp
[
T

2τ0

(
ρ1(τ1) − ρβ(τ1)

)
]
C12

τ0

×
∫ τ1

0

dτ2 exp
[
T

2τ0

(
ρβ(τ2) − ργ(τ2)

)
]

× Γ (β, τ2) − Γ (1, τ2)
τ0∆Γmin

C22

×
∫ τ2

0

dτ3 exp
[
T

2τ0

(
ργ(τ3) − ρ1(τ3)

)
]

× Γ (γ, τ3) − Γ (1, τ3)
τ0∆Γmin

C21‖ζ‖

≤M(N −M)C12C21∆Γ
−1
min

2
T

(N −M)C22∆Γ
−1
min

2
T
‖ζ‖.

(B.48)
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Thus we get

‖K(1)ζ‖ ≤M(N −M)C12C21∆Γ
−1
min

2
T

× (N −M)C22∆Γ
−1
min

2
T
‖ζ‖. (B.49)

It is easy to see that this can be generalised to

‖K(r)ζ‖ ≤M(N −M)C12C21∆Γ
−1
min

2
T

×
[
(N −M)C22∆Γ

−1
min

2
T

]r

‖ζ‖,

(r = 0, 1, 2, . . .). (B.50)

Now we can go back to (B.42). For ζ(τ) as in (B.1) we get
for large enough T

‖L(1,2)(1 − L(2,2))−1L(2,1)ζ‖ =
∥
∥∥

∞∑

r=0

K(r)ζ
∥
∥∥

≤
∞∑

r=0

‖K(r)ζ‖ ≤ O
(

1
T

)
‖ζ‖. (B.51)

Here we use that for large enough T ,
∑∞

r=0 ‖K(r)ζ‖ is
bounded by a convergent geometric series due to (B.50).
The analogous argument was already used in (A.7).

In an analogous way we can estimate

(1 − L(2,2))−1L(2,1)ζ =
∞∑

r=0

(L(2,2))rL(2,1)ζ (B.52)

where τ → ζ(τ) is as in (B.1). We find

‖(L(2,2))rL(2,1)ζ‖ ≤ Ĉ21(T∆Γmin)−1

× [
(N −M)C22∆Γ

−1
min

2
T

]r‖ζ‖, (B.53)

where

Ĉ21 = 2MC21 max
M+1≤α≤N

τ∈[0,τ0]

| exp (iγαα(τ)) |. (B.54)

With the argument of the geometric series we get, there-
fore, for large enough T

‖(1 − L(2,2))−1L(2,1)ζ‖ ≤ O
(

1
T

)
‖ζ‖. (B.55)

Consider next the operator L̃ (B.14). From (B.51) and
(B.41) we get, always for large enough T ,

‖L̃ζ‖ = ‖L(1,2)(1 − L(2,2))−1L(2,1)(1 − L(1,1))−1ζ‖

≤O
(

1
T

)
‖(1−L(1,1))−1ζ‖≤O

(
1
T

)
‖ζ‖. (B.56)

Iterating this and using again the argument based on the
geometric series leads to

∥
∥
∥

∞∑

k=1

L̃kζ
∥
∥
∥ ≤ O

(
1
T

)
‖ζ‖. (B.57)

The next term to consider in (B.13) is (1 − L(2,2))−1ξ̃(0).
We analyse this term in a way similar to (1 − L(1,1))−1

above, see (B.15)–(B.35). Let

ηc =

⎛

⎜
⎝

ηc M+1

...
ηc N

⎞

⎟
⎠ (B.58)

be a constant vector and set as in (62)

η̃α(T ; τ) = exp
[
−i
T

τ0
ϕα(τ) +

T

2τ0
ρ1(τ) + iγαα(τ)

]
ηcα,

α ∈ {M + 1, . . . , N}. (B.59)

We define a matrix function V (T ; τ) by

N∑

β=M+1

Vαβ(T ; τ)ηcβ =
(
(1 − L(2,2))−1η̃

)

α
(T ; τ), (B.60)

V (T ; τ) =
(
Vαβ(T ; τ)

)
,

α, β ∈ {M + 1, . . . , N}. (B.61)

This matrix satisfies

V (T ; 0) = �N−M , (B.62)

∂

∂τ
V (T ; τ) = Ã(T ; τ)V (T ; τ), (B.63)

where we get with (28)–(31)

Ã(T ; τ) =
(
Ãαβ(T ; τ)

)
,

Ãαβ(T ; τ) =
[
−i
T

τ0
E(α, τ) +

T

2τ0
Γ (1, τ)

]
δαβ + iaαβ(τ),

α, β ∈ {M + 1, . . . , N}. (B.64)

In analogy to (B.25) we consider

B̃(T ; τ) = V (T ; τ)V †(T ; τ) (B.65)

and get

∂

∂τ
TrB̃(T ; τ) = Tr

{
B̃(T ; τ)

[
Ã(T ; τ) + Ã†(T ; τ)

]}

≤
[
− T

τ0
∆Γmin +

2c
τ0

]
TrB̃(T ; τ), (B.66)

where we used (53) and set

c=
τ0
2

max
τ∈[0,τ0]

⎧
⎨

⎩

N∑

α,β=M+1

|aαβ(τ)−a∗βα(τ)|2
⎫
⎬

⎭

1/2

. (B.67)
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From (B.66) we get easily

TrB̃(T ; τ) ≤ (N −M)e2c exp
(
− T

τ0
∆Γminτ

)
, (B.68)

|Vαβ(T ; τ)| ≤ √
N −M ec exp

(
− T

2τ0
∆Γminτ

)
(B.69)

for all α, β ∈ {M + 1, . . . , N}. With the Cauchy-Schwarz
inequality we get from (B.68) also

N∑

α,β=M+1

|Vαβ(T ; τ)|

≤
⎡

⎣

⎛

⎝
N∑

α,β=M+1

|Vαβ(T ; τ)|2
⎞

⎠

⎛

⎝
N∑

α,β=M+1

12

⎞

⎠

⎤

⎦

1/2

= (N −M)
[
TrB̃(T ; τ)

]1/2

≤ (N −M)3/2ec exp
(
− T

2τ0
∆Γminτ

)
. (B.70)

From (B.70) we find

∣∣
∣
(
(1 − L(2,2))−1η̃

)

α
(τ)

∣∣
∣ =

∣
∣
∣∣
∣
∣

N∑

β=M+1

Vαβ(T ; τ)ηcβ

∣
∣
∣∣
∣
∣

≤ Ĉ22 exp
(
− T

2τ0
∆Γminτ

)
‖ηc‖,

α ∈ {M + 1, . . . , N}, (B.71)

where

Ĉ22 = (N −M)3/2ec. (B.72)

With the result (B.70) we can estimate the term

L(1,2)
(
1 − L(2,2)

)−1
ξ̃(0) = L(1,2)V ξ(0) (B.73)

in (B.13), where ξ(0) is given in (60) and ξ̃(0) in (62). We
get from (B.6)
(
L(1,2)V ξ(0)

)

α
(τ) =

i
∫ τ

0

dτ ′ exp
[
i
T

τ0
ϕα(τ ′) − T

2τ0
ρ1(τ ′) − iγαα(τ ′)

]

×
N∑

β,γ=M+1

aαβ(τ ′)Vβγ(T ; τ ′)ξ(0)γ ,

α ∈ {1, . . . ,M}; (B.74)

∣
∣∣
(
L(1,2)V ξ(0)

)

α
(τ)

∣
∣∣ ≤

C′
12

τ0
‖ξ(0)‖

∫ τ

0

dτ ′
N∑

β,γ=M+1

|Vβγ(T ; τ ′)|, (B.75)

where we set

C′
12 = max

1≤α≤M

M+1≤β≤N

τ∈[0,τ0]

τ0|aαβ(τ) exp (−iγαα(τ)) |. (B.76)

With (B.70) we obtain finally

‖L(1,2)(1 − L(2,2))−1ξ̃(0)‖ = ‖L(1,2)V ξ(0)‖

≤ 2
T
∆Γ−1

minC
′
12(N −M)3/2ec‖ξ(0)‖. (B.77)

Now we have collected all tools needed to discuss the so-
lution for χ(T ; τ) given in (68) and (B.13) for large T . We
have from (B.13)

χ =
(
1 − L(1,1)

)−1
[
χ(0) + L(1,2)

(
1 − L(2,2)

)−1

ξ̃(0)
]

+
(
1 − L(1,1)

)−1 ∞∑

k=1

L̃k

×
[
χ(0) + L(1,2)

(
1 − L(2,2)

)−1

ξ̃(0)
]
. (B.78)

From (B.77) we have

‖L(1,2)
(
1 − L(2,2)

)−1

ξ̃(0)‖ = O
(

1
T

)
‖ξ(0)‖, (B.79)

With (B.57) and (B.41) we find

∥∥
∥
(
1 − L(1,1)

)−1 ∞∑

k=1

L̃kχ(0)
∥∥
∥ = O

(
1
T

)
‖χ(0)‖, (B.80)

∥∥
∥
(
1 − L(1,1)

)−1 ∞∑

k=1

L̃kL(1,2)
(
1 − L(2,2)

)−1

ξ̃(0)
∥∥
∥ =

O
(

1
T 2

)
‖ξ(0)‖. (B.81)

Inserting all this in (B.78) gives

χ =
(
1 − L(1,1)

)−1

χ(0) + O
(

1
T

)
‖χ(0)‖

+ O
(

1
T

)
‖ξ(0)‖. (B.82)

With the definition of the matrix Û(T ; τ), (B.16), we get
explicitly

χ(T ; τ) = Û(T ; τ)χ(0) + O
(

1
T

)
‖χ(0)‖ + O

(
1
T

)
‖ξ(0)‖.
(B.83)
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